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Abstract

Recently, a mathematical framework has been developed for the provision of
deterministic quality of service guarantees in integrated services networks. This
framework, or so-called “network calculus,” involves the concepts of traffic en-
velopes, service curves, and convolution in the min-plus alegebra. Traffic envelopes
constrain arrival processes, while service curves constrain the input-output behavior
of network elements. Upper bounds on network delay are implied by the distance
between a traffic envelope and service curve.

In this paper, we develop a somewhat parallel framework for the provision of
deterministic quality of service guarantees to adaptive applications. Adaptive ap-
plications generate a traffic load that is dependent on network utilization, and thus
characterizing the traffic generated from an adaptive application with an envelope
is problematic. We introduce an adaptive service definition, through which upper
bounds on network delay can be derived without using a traffic envelope. Instead,
upper bounds on network delay are obtained in terms of the backlog and an ab-
solute service curve. Since the backlog can be controlled through feedback, e.g.
through window flow control, this yields a mechanism to obtain upper bounds on
network delay. Lower bounds on network throughput are also implied through an
absolute service curve.

1 Introduction

Adaptive network applications utilize feedback from the network to adjust the rate at
which traffic is generated, so that network resources can be used efficiently. When an
adaptive traffic source senses that the network is underutilized, it may choose to inject
traffic into the network at a higher rate. The traffic may be generated from a fixed
size data object, as in a file transfer, where the short term traffic rate is modulated
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in accordance with a window flow control protocol. Alternatively, the total volume of
traffic generated may in fact depend on the network feedback, as in adaptive multimedia
compression algorithms that encode data with a lower distortion when the network is
underutilized. With such adaptive applications, it is difficult to predict in advance the
range of traffic behavior. At the same time, such adaptive applications may require
quality of service guarantees from the network in order to function. For example, upper
bounds on network latency may be required for interactive applications, and a network
throughput guarantee may be required as well.

Recently, a mathematical framework has been developed for obtaining deterministic
bounds on quality of service in integrated services networks [1][2][3][4][5][7]. Within this
framework, upper bounds on delay are obtained with respect to a traffic envelope, which
places an upper bound on the amount of data generated over intervals of time. For
traffic that can be well characterized in terms of an envelope, bounds on delay, buffering
requirements, and throughput can be obtained.

Adaptive applications, however, may generate traffic that is not well characterized by
an envelope. Lower bounds on throughput, independent of a traffic envelope, are implied
through a service curve [1]. Thus, within this mathematical framework, it is still possible
to obtain throughput guarantees for adaptive applications. However, without a traffic
envelope, it is difficult to obtain meaningful bounds on delay for an adaptive application
that changes its traffic rate in response to network conditions.

In this paper, we develop a new mathematical framework which is useful for mod-
elling services which guarantee upper bounds on delay and lower bounds on throughput,
without requiring arrival traffic to be constrained by an envelope. We introduce an
adaptive service definition which is the foundation of this framework. We shall see that
the adaptive service definition is robust in the sense that we may obtain adaptive ser-
vice guarantees for end-to-end systems that consist of network elements that themselves
provide adaptive service guarantees. In particular, we shall obtain adaptive service guar-
antees for window flow control protocols. We shall also discuss a network element called
an “elastic regulator” that can be used to allocate adaptive service guarantees, while
allowing a traffic stream to utilize excess bandwidth.

In the next section, we shall review pertinent previous results and concepts, which
provide the building blocks and the motivation for the mathematical framework developed
in this paper.

2 Previous Results and Concepts

2.1 Notation and Preliminaries

We define a process to be a function of time, e.g. A(t). Formally, A is a mapping from the
real numbers into the extended non-negative real numbers, i.e. A: IR — R U {+o0}.
A process could count the amount of data arriving or departing to/from some network
element, and in this case we may call the process an arrival process or a departure process,
respectively. All processes are assumed to be non-decreasing and right continuous. We
shall often consider what we call causal processes, which are simply processes which are
identically zero for all negative times. For example, if A is a causal arrival process to
a network element, then A(¢) is equal to the amount of data (in bits) arriving to the
network element in the interval (—oo, ], and A(t) = 0 for all ¢ < 0.

Given two processes A and B, the convolution of A and B is defined to be the function



AxB:R — R, U{+oo} such that

Ax B(t) = TlgI%{A(T) +B(t—1)}.

It is easy to verify that A * B is a process, i.e. it is non-decreasing, and right continuous.
Furthermore, if A and B are causal, then A x B is causal.

The convolution operator is commutative and associative , i.e. AxB = B* A and
(A*B)*C = Ax(Bx*C). Furthermore, if BAC' denotes the pointwise minimum of B and
C, then Ax(BAC) = (AxB)A(BxC). In other words, convolution is distributive with
respect to the minimum operator. The identity element § of this operator that satisifes
Axd =06+ A= A may be verified to be

0 ,t<0
5(t):{oo t>0.

Defining d4(t) := 0(t — d), note that d, is a “shift element,” i.e. for any process A we
have A x 64(t) = A(t — d).

If G is a causal process, then! G < §. Thus, if F is any process and G is any causal
process, then FxG < Fx§ =F.

The “deconvolution” of A and B, or A deconvolved with B, is defined by

AQ B(t) = suﬂg{A(t +7)— B(1)}
TE
for all ¢. It is easy to verify that A @ B is a process, i.e. it is non-decreasing, and right
continuous. Furthermore, if A and B are causal, then A @ B is causal. It can be verified
that A @ B is the smallest process H such that H x B > A. In other words, if H* B > A
then H > A@ B, and furthermore (A @ B) * B > B.
We use the notation z* to denote max{z,0}.

2.2 Service Guarantees

Suppose that the arrival of traffic to a network element is described by the cumulative
arrival process R;,. The network element is a service curve element with minimum service
curve S™" if the departure process R,,; from the element satisfies R,y > R * S™".

A process F is said to be an envelope for the process R if for all 7 < ¢ we have
R(t) — R(7) < E(t — 7), or equivalently R < R* E.

A process FE is said to be sub-additive if for all t, 7 € IR we have E(7)+E(t—71) > E(t).
Thus, if ' is a sub-additive process, then ExE > FE. It is usually assumed that envelopes
are sub-additive and causal.

Given any process F, then we use the notation F(* to denote the sub-additive closure
[3] of F,i.e. F(®) =A% F™ and F(™ denotes the n-fold convolution with itself (F(®) =

J).

The backlog B of a network element describes the amount of data stored in the
network element as a function of time. If the arrival and departure process of the network
element are R;, and R,,;, then the backlog B(t) is given by

B (t) = Ry, (t) — Rout (t) )

'In this paper, all inequalities involving functions are defined in a pointwise sense.



assuming that no data is stored in the network element at time ¢ = 0. If data from the
network element departs in the same order that it arrives, then data arriving at time ¢
will depart by time ¢ + A only if Ryu.(t + A) > Ri,(t). This motivates the following
definition of d(t), the virtual delay at time ¢:

d(t) =1inf{A : A > 0 and R,u:(t + A) > R;,(t)} .

One of the fundamental previous results concerning envelopes and service curves is
that delay can be upper bounded by maximum horizontal distance between an envelope
and a service curve. This is formalized in the following proposition.

Proposition 1 [5/[1/[7][2] Consider a service curve element with minimum service curve
S™in - [f the arrival process has envelope E, then the virtual delay d(t) satisfies d(t) <
d™* for all t, where

d™ =inf{d:d >0 and E x 6, < S™"} .

It is easy to see that if the arrival process to a service curve element is unconstrained,
then the virtual delay can be unbounded, since the backlog may be unbounded. Adaptive
applications may use feedback to adjust the arrival process to a network so that the
backlog remains bounded. However, even if the backlog of a service curve element remains
bounded, the virtual delay may still be unbounded. This is because the condition R,,; >
R, * S™" is not strong enough to guarantee that R,,; will increase over an arbitrary
interval where the backlog is positive. For example, suppose R, (s) is significantly larger
than R, x S™"(s), say Rout(s) > Rip * S™"(s+ A), where A is large. In this case, the
constraint Ry, (u) > Ri, * S™"(u) can be met for u € (s,s + A) even when no data
departs the network element in the interval [s,s + A], i.e. Roui(s + A) = Roue(s). In
other words, roughly speaking, if a traffic stream receives significantly more service than
it is guaranteed up to a time s, then after time s it is possible for a service curve element
to serve very little traffic, and still meet the guarantee specified by the service curve.
In order to guarantee an adaptive session a bounded delay, it should not be “punished”
later for utilizing excess bandwidth at an earlier time. This motivates the adaptive service
definition introduced in the next section.

3 Adaptive Service Guarantees

Definition 2 (Adaptive Service Guarantee) Given a network element with arrival
process Ry, and departure process Rou. Let S and S be causal processes. We say the
network element adaptively guarantees (S, S) over [s*,t*], if for all s,t € [s*,1*] and s <t
we have

Rout(t) > {Rous(s) + S(t — s)} A inf {Ry,(u) + S(t —u)} . (1)

w:it>u>
If (1) holds for all s,t € [s*,t*] and s < t, then we write, as a shorthand notation,
R'm_>(Sa S) [s*,t*]_>Rout

If (1) holds for all s,t € R and s < t, then we simply say that the network element
adaptively guarantees (S, S), and we write as a shorthand notation
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R — (S, 5‘)—>R,mt )

In the context of these definitions, we say that S is a partial service curve, and that S is
an absolute service curve.

In the special case where S = S and R, — (S, S‘)[s*’t*] — Ry, we simply say that the
network element adaptively guarantees S over [s*, ], and we write Ri,—(S)(s+ o1~ Rout-
Similarly, if Rm—>(§ , S)—)Raut then we simply say that the network element adaptively
guarantees S , and we write Rin—>(§)—>Rout.

To get a rough sense of the meaning of these definitions, suppose that R;,— (S, S)—>
Ry, and fix s < t. Note that the lower bound on R, (t) in (1) potentially increases
with R,y (s), and it is in this sense that the guarantee is adaptive. Said another way,
the amount traffic that departs over (s,t), namely Rou(t) — Rou(s) is at least S(t —
s), assuming that Ry, is sufficiently large over (s,t¢), and this is independent of how
much traffic departed prior to time s. This also motivates why we have called S an
absolute service curve. The partial service curve S influences the lower bound on Ry, (t)—
R,ui(s) in the case where R;, is “small” over the interval (s,t). Other motivations for
the terminology will become more clear once we examine systems composed of network
elements that provide adaptive service guarantees.

Next, we give two simple examples of network elements which provide adaptive guar-
antees.

Example 3 (Constant Delay Element) Consider a network element with constant
delay d > 0, where Ry,(t) = R (t — d) for all t. There holds Ri,—(64)— Rout-

Example 4 (GPS Server) Consider a session passing through a Generalized Processor
Sharing (GPS) [9] server, with arrival process Ry, and departure process Ryy. One of
the properties of a GPS server is that each session passing through it has a guaranteed
minimum bandwidth, say ¢. In particular, if B(u) = Ri,(u) — Rous(u) > 0 for u € (s,t),
then Rout(t) — Rout(s) > ¢(t — s). Define the process gy according to py(t) = ¢t if
t >0 and py(t) =0 fort < 0. It is not difficult to show that the GPS server adaptively
guarantees pi4 to the session, i.e. Ri,—(tg)—Rout-

The guarantee provided by GPS motivates the following definition.

Definition 5 (Strong Service Guarantee) Consider a network element with arrival
process R;,, departure process Ry, and backlog B = Ry, — Ryyu. Let S* be a process.
Suppose the network element has the property that for all intervals (s,t) where inf{B(u) :
u € [s,t]} > 0 there holds Roui(t) — Rout(s) > S*(t — s). In this case, we say that the
network element strongly guarantees S*, and we call S* a strong service curve.

For example, one of the defining properties of a GPS server is that it strongly guaran-
tees g, in the context of Example 4. In fact, a strong service curve is consistent with the
notion of the “universal service curve” originally introduced in [9]. An adaptive service
guarantee implies a strong service guarantee, as we now discuss.

Proposition 6 (Strong Service from Adaptive Service Guarantee) Consider a net-
work element with arrival process R;, and departure process Rgut. If Rin— (S, S)—=Rout,
then the network element strongly quarantees S*, where S* = S % S(°).



For example, since p1g = pip * g, it follows that if a network element adaptively
guarantees [i4, then it stongly guarantees 1.

As another example, consider a network element with constant delay d > 0. Combin-
ing the results of Example 3 and Proposition 6, it follows that a constant delay element
strongly guarantees S* = 0. It is clear that, while trivial, this is the best result possible
since we may inject an arbitrarily small amount of traffic into the delay element for an
arbitrarily long interval of time, while keeping the backlog strictly positive throughout
the interval.

The following result illustrates a distinction between an strong service guarantee and
an adaptive service guarantee.

Proposition 7 If Rm—~>(S, S’)—)Rout, and the network element has a backlog at time
s <t such that B(s) > S(t — s), then Ry (t) — Rout(s) > S(t — s).

For all z, define the “pseudo inverse” of S, S—* according to
S~ (z) =inf{y:y>0,S(y) >z} .

Using the right continuity of S, it follows that S(S~'(z)) > = for all z.
We now present an upper bound on virtual delay in terms of the backlog, which is
almost equivalent to Proposition 7.

Proposition 8 (Delay Bound from Backlog) If Ri,— (S, S)—Rous, then the virtual
delay at time t, d(t), is upper bounded according to d(t) < S~1(B(t)).

The significance of Proposition 8 is that the delay bound does not require the arrival
process R;, to be constrained by an envelope, but only that the backlog B is bounded.
One possible way to ensure that the backlog is bounded is to employ feedback, as we
shall discuss later, within the context of window flow control.

3.1 Composition Results

We first consider a tandem series of n network elements, with no feedback.

Proposition 9 (Composition of Adaptive Service Guarantees) Suppose for i =
1,---,n, we have

R;_1—(S;, S‘i)[s*,t*}—)Ri )
Then
Ry—(Sy % Sp % -+ % Sy G) s+ = B
where G = (S; % Sy %% S) A (Sy %Sk ---%S) A=A (Sn1%Sy) A S, .

Next, we consider network elements with feedback.

Consider the closed loop window based flow control model depicted in Figure 1, which
consists of network element N;, network element N5, and another network element called
a throttle. The arrival process to the throttle is R;,, and the departure process of the
throttle, R, is as large as possible, subject to a “throttle control process” W + F. In
particular, we have

R(t) = Ru() N{F{t)+W(@1)},
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Network Element

Source Throttle Ny Destination
R, R(Y) j R
S - — —
S (s.S)
W § Network Element
N2
F(t) /

(S,,S)

Figure 1: A single hop with window flow control

for all . Thus, the throttle may store traffic. The throttle departure process feeds
network element N;, whose departure process is denoted as R,,;. Finally, the arrival
process to network element N, is R,,;, and the departure process of N, is given by the
process F'.

We call W the window size process, even though it may be a decreasing function. It
is assumed, however, that the throttle control process F' + W is a process, i.e. it is a
non-negative, non-decreasing, right-continuous function.

Note that the total amount of traffic stored in N; and N, at time t is given by
R(t) — F(t) < (F(t) + W(t)) — F(t) = W(t), and thus W (t) controls the backlog in N;
and N,.

Proposition 10 (Adaptive Service Guarantee for Window Flow Control) If R—
(51,5'1)[3*,75*}—)]%0% Rout%(Sg,Sz)[s*,t*]—)F, R = Ry, A (F+W), and W(u) = w > 0
for all u € [s*,t*], then Ry, — (Y, f/)[s*,t*] — Ry, where Y = A%,[S1 * G™ + nw),
Y =A% [G* G™ 4+ nw|, G =Sy %S,, and G =Sy A (Sy % 81).

Corollary 11 Suppose R—>(51,§1)[s*,t*}—>Rout, Rout%(Sg,SQ)[s*yt*]—)F, R = Ry N (F +
W), and W(u) = w > 0 for all u € [s*,t*]. If w > sup,er{G(t) — (G * G)(t)} and
w > sup,cp{Si(t) — (S1* G)(1)}, then Rin—(S1, G)[s 111 Rout-

Example 12 Consider network illustrated in Figure 1, in the special case where Ny
represents the tandem configuration of a local GPS server with bandwidth gquarantee ¢, a
constant propagation delay of dr, and a remote GPS server with bandwidth guarantee ¢.
Also, suppose Ny represents constant propagation delay of dg. In this case, N1 adaptively
guarantees S; = He * 04, and Ny adaptively guarantees dq,. Corollary 11 implies that if
w is equal to the bandwidth delay product, i.e. w = ¢(dr + dr), then Ri,—(pip * Ogy, fig *
Odp * Odg)[s* ] Rout- Furthermore, suppose that the source adapts to the feedback, such
that the backlog in the throttle does not exceed b'**. In this case, since the backlog in
network element Ny is upper bounded by w = ¢(dp + dr), it follows that R;;, — Rou 18
upper bounded by w + U**. Hence, applying Proposition 8, it follows that the network
delay is upper bounded by 2(dr + dg) + b7 /.

Next, we consider the issue of how to construct network elements that provide adap-
tive service guarantees. We begin with a motivating proposition.
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Figure 2: An Elastic Regulator

Proposition 13 (Basic Synthesis of Adaptive Service Guarantee) Consider a net-
work element that guarantees minimum service curve S™", and suppose the arrival pro-

cess is known to have the traffic envelope E. Then the network element adaptively guar-
antees (S, S), where S = S™" and

S(z) = yl;lzfo{ [Sm’"(aﬁ +y)— E(y)]+} for all x.

Proposition 13 suggests a way to synthesize a network element that provides an
adaptive guarantee. First, we “shape” traffic with a regulator [1][3] so that it has an
envelope E. The departure process of the regulator thus has envelope E, and is then
fed to a minimum service curve element with minimum service curve S™". According to
Proposition 13, the system then adaptively guarantee (S™", S') Note that in order to
maximize S, we wish to set E as small as possible. However, if F is too small, then the
minimum service curve of the entire system E x S™", will be smaller than S™". This
then motivates choosing £ > S™" @ S™" A problem with this approach is that the
regulator may prevent utilization of excess bandwidth that may be offered.

3.2 [Elastic Regulator

This motivates us to consider a new network element, called an “elastic regulator.” which
has a single arrival process, R;, and a departure process that is decomposed into two
sub-departure processes, corresponding to a “conformant” departure process, Rm, and an
“out-of-band” departure process, R%4"  as illustrated in Figure 2. The elastic regulator
ensures, essentially, that R;, has envelope F, and thus we refer to packets that are
counted in R;, as conformant packets. In order to utilize excess bandwidth, packets may
depart “out of band.” Such packets are counted in the “out-of-band” departure process
R2%and - and are called out-of-band packets.
We shall define the elastic regulator with respect to an arrival process of the form

Rin(t) = g Lru(t — %) |

where u(z) = 1 if x > 0 and u(z) = 0 if z < 0. In particular, packets arrive in-
stantaneously at the instants 7° < 7! < 72..., and L* denotes the length in bits
of the k' arriving packet. The backlog of the elastic regulator is given by B (t) =
Rin(t) — Rin(t) — R%d(1). Packets may depart “out-of-band” at time ¢ if B"(t) > 0 or
if t = 7F for some k. We do not otherwise specify when packets may depart out of band,
and in fact this is determined by a downstream network element. The elastic regulator

is defined by specifying when conformant packets may leave.



Toward this end, suppose that F is a causal, sub-additive envelope. We shall in
fact also assume that E(t) is left-continuous for ¢ > 0, which does not appear to be a
significant loss of generality. We assume that there is a maximum packet size Lqz, i-€.
sup{L* : k > 0} < Lyee-

We represent the conformant departure process as

where LF is the number of bits of the k™ conforming packet that departs, and we define
70 =0 and L° = 0. We also assume 0 < 7% < 761 for all k.
We define the envelope E’ as follows:

, _ E(z) + Loy ,forz>0
E(z) = { 0 elsewhere

We will refer to E as the “target” envelope, since the R;, will not in general have envelope
E, but only have envelope E'.

We describe when conforming packets may depart in terms of a sequence {7}, }, defined
below. We call 7, the eligibility time of the k*" conformant departure. This eligibility time
is based on previous conformant departures from the elastic regulator and is recalculated
each time any conformant departure takes place. The sequence {7} is defined as follows.
Let 71 := 0, 7° := 0, and then 7;, is computed recursively from (7!,7%,--,7%) at time
7% In particular

j—1

Tpy1 = inf{s: s > #* and niuik[z '+ E(s—)]>Y 11 .
‘ 1=0

M=

Ji1<5< !

Il
)

By definition, the k** conformant departure can be no earlier than 71. The k* confomant
departure is at time 7, unless lim; ,(,7)- (B](¢)) = 0 and there is no arrival to the elastic
regulator at time 7;. In this case, the time of the k™ conformant departure is the time
of the first arrival to the elastic regulator after time 7.

Lemma 14 An elastic requlator with target envelope E has the following properties:
(i) The conformant departure process has envelope E', i.e. Rin < Riyp % E'.
(i1) For B'(w) > 0, there exists = < w such that Ri,(w) — Rin(z) > E(w — ).

(i7) Given u' and any € > 0, there ezists w < u'+ € and there exists w* € (w—¢€,w +€)
such that

A

Rin* E(u') > Rip(w) + E(u' — w) — ¢,

Proposition 15 Consider a system composed of an elastic requlator with target envelope
E and a service curve element with minimum service curve S™". The arrival process of
the system directly feeds the elastic requlator. The conformant departures of the elastic
requlator feed the service curve element. Finally, the departure process of the system,

A

Roui, 1s given Ry = Rour + R(‘jfﬁ"d, where R, 1s the departure process of the service



curve element and R4 s the out-of-band departure process from the elastic regulator.

If E > S™in @ 5™ there holds Rin—(S, S)—Rou, where S = S™" and
S(z) = inf {[Smm(x +y)— E'(y)]+} for all z.
y:y>0

The significance of Proposition 15 is that out of band departures from the elastic
regulator allow excess bandwidth to be utilized, but do not jeopardize the benefit of the
adaptive service guarantee provided by the minimum service curve element, as implied
by Proposition 13. In particular, similar to [6], elastic regulators may be employed at
the input of a scheduler that provides prescribed minimum service curve guarantees, as
in the “SCED” scheduler in [5][10]. In this context, out-of-band packets are served when
the scheduler backlog is zero. This will result in a system that allows excess bandwidth
to be utilized, while providing prescribed adaptive service guarantees. Details can be
found in [8]
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